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ABSTRACT: Recently a novel method termed compound set
enrichment (CSE) has been described that uses the activity
distribution of a structural class of compounds to identify hit
series from primary screening data. This report describes how
this method can be used to identify such hit series, even when
no hits according to conventional hit-calling methods for a
given structural class are present in the data set. Such series,
which were called latent hit series, were identified prospec-
tively in a cell-based screening campaign and also in a series of
retrospective analyses of publicly available data sets from
PubChem. The assay used for the prospective case study was
developed to identify compounds modulating protein translation directed from the internal ribosome entry site (IRES) of the
encephalomyocarditis virus (EMCV) genomic RNA. The assay was designed with the ability to detect two assay readouts. The
first assay readout monitors compound effects on IRES-directed translation, and the second readout monitors the cell viability
and general effect on protein expression. By applying CSE separately to both of them, six validated latent hit series with
apparently no effects on cell viability were identified. For each of these series, further testing of new compounds enabled
identification of additional hits, also apparently with no effect on cell viability. These validated latent hit series would have been
missed by a conventional cutoff-based hit-calling approach. This prospective study further supports CSE as a method for the
analysis of high-throughput screening experiments.

■ INTRODUCTION
High-throughput screening (HTS) has become firmly accepted
as an important tool in small-molecule drug discovery.1−3 In
fact, HTS was shown to have been pivotal in the discovery of a
number of recently approved drugs.4 Nevertheless, despite the
increasing size of libraries and the complexity of biological
assays available for HTS, this technique is not guaranteed to
identify suitable starting points for medicinal chemistry, even if
a biologically meaningful and robust assay is used.4 Given the
effort required for development and the cost of executing an
HTS campaign, such an outcome is clearly unsatisfactory.
The goal of a HTS campaign is not the discovery of an

optimal drug candidate for the target of interest but rather to
provide a starting point for exploration by medicinal chemistry.
For this reason, the objective of an HTS campaign is not the
discovery of a single high-potency hit but, rather, a series of
compounds displaying a rational structure−activity relationship
(SAR).3,5 Hits identified during HTS campaigns are often used
as just the starting point for the discovery of additional, related
compounds with a range of potency and activity. All biological
assays, including HTS assays, are limited in sensitivity and the
activity range that they can monitor. Even for HTS campaigns
conducted with a primary concentration response, such as
qHTS campaigns, the assays are limited to detecting com-
pounds with absolute AC50 values less than the highest con-
centration tested.6 This in turn is usually dependent on the
concentration of the dimethyl sulfoxide (DMSO) stock solu-
tions for screening and the DMSO tolerance of the assay.

However, it is still possible that there may be series of active
compounds within the screening library without any compound
passing an arbitrary activity threshold being used to define a hit.
Such a series of compounds would not be identified by con-
ventional hit-calling methods and would be missing from a hit
list. Weak active compounds were shown to contain meaningful
information, as for target-related affinity profiling or SAR extrac-
tion, for example.7−9 Also, recently Mestres and Veeneman10

highlighted the potential of such weak, but still active, com-
pounds. They suggested that it may be possible to transform, by
small modifications of their structure, weakly active compounds
into hits; such compounds were called “latent” hits. The authors
describe how the use of pharmacophore information can be
used to “awaken” such latent hits. But prior knowledge of the
active pharmacophore is required for such a transformation. In
addition, this pharmacophore-directed transformation must be
applied individually to each potentially latent hit.
The concept of latent hit series can be rationalized by the

projection of a chemical series in the biological space. An active
compound contains an optimal combination of the correct
scaffold and side groups for binding to a target. Side groups
not optimal for binding result in only weakly active or, in the
extreme case, inactive compounds. Even if a molecular scaffold
presents the correct size and shape features required for bind-
ing, it is still necessary to test a range of compounds based on
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this scaffold in order to find active compounds. Therefore, even
if a scaffold is biologically validated, it is necessary to synthesize
and screen a library of compounds around this scaffold in order
to identify compounds with the right substitution patterns to be
identified as hits, as reported for the biology-oriented synthesis
concept (BIOS).11 The virtual library space that is covered by
current synthesis protocols has a size at least on the order of
magnitude of 1011−1012 compounds.12,13 Although in a typical
high-throughput screening group up to a few million com-
pounds can be tested against a particular target, this number is
small compared to the size of the virtual library space. Thus it is
clear that the chance of finding a compound with the optimal
combination of scaffold and side chains is limited. Nevertheless,
the possibility of finding latent hit series is much higher. This is
especially interesting for screening campaigns that have initially
failed to discover potent chemical starting points.
Recently Varin et al.5,14 introduced a method for the analysis

of HTS data that is not dependent on an activity cutoff. The
method, called compound set enrichment (CSE), was initially
developed to identify hit series (defined by a common scaffold)
instead of individual hit compounds. Compound series were
defined by a common scaffold obtained either from the scaffold
tree, as in the initial publication,5 or from the scaffold network,
recently published.14 The scaffold network is obtained by sys-
tematically dissecting the molecular framework in order to
obtain a set of smaller parent scaffolds. The parents obtained in
this way are iteratively dissected themselves. The relationship
between the parent and child scaffolds is recorded, leading
effectively to a network of scaffolds. In a second step, a non-
parametric statistical hypothesis test (Kolmogorov−Smirnov or KS)
was used to evaluate whether the compounds of a given
scaffold class present an activity distribution different from the
general population of inactive compounds. In the assays pre-
viously analyzed with this method,5 many of the active scaffolds
were populated with compounds defined as hits by a standard
activity cutoff. Most of these scaffolds were also populated by
additional weakly active and inactive compounds. These results
highlight the efficiency of the method to identify hit series of
compounds with relevant SAR directly from primary HTS data.
Nevertheless, these results do not permit one to determine
whether these scaffolds would also be predicted as active if no
hits according to conventional hit selection criteria were pres-
ent in the data set. If this is possible, then CSE is suitable to
detect latent hit series.
This hypothesis can be retrospectively tested: One takes a

HTS data set, removes all the compounds more active than an
activity cutoff in the range typically used to process a primary
screening hit list, and tries to identify nevertheless the scaffolds
containing the active compounds in the full data set. The
results of such a study using two screening data sets from
PubChem are reported here. The assay used are the HSD17B4
[hydroxysteroid (17-β) dehydrogenase 4] inhibitor assay
(PubChem assay ID 893)15 and the HADH2 (hydroxyacyl-
coenzyme A dehydrogenase, type II) inhibitor assay (PubChem
assay ID 886).16 The motivation for using these qHTS data sets
is that concentration−response curves are available for all
compounds tested in these bioassays.6 For all curves, individual
data points, fitting parameters, and IC50 values are available.
The compounds are annotated in PubChem as active, incon-
clusive, and inactive. These results allow the simulation of a
classical screening process by using the results from the highest
concentration tested to simulate the results that would be
obtained from a standard primary screen. Then the complete

concentration response curve and compound activity annota-
tion derived from it are available for the validation step.
The results of the retrospective analysis were encouraging

enough to justify a prospective study on an in-house medium-
throughput screening project. The assay chosen for this study
was developed both to identify compounds modulating protein
translation directed from the internal ribosome entry site
(IRES) of the encephalomyocarditis virus (EMCV) genomic
RNA and to deprioritize compounds that alter cell viability.17

To facilitate compound screening, a bicistronic reporter gene con-
struct, containing a neomycin gene (Neo) and the firefly luciferase
(Fluc) reporter gene, was used (see Figure S7 in Supporting
Information). Following transcription, the neomycin resistance
gene is translated by a cap-dependent mechanism, while Fluc
expression is directed by the EMCV IRES (pNeo-EMCV) in a
cap-independent manner. This assay can then potentially iden-
tify compounds that inhibit Fluc expression (cap-independent)
without influencing the cap-dependent expression of the
neomycin resistance gene. Such differential activity can be
detected because the presence of Geneticin in the cell culture
means that inhibition of the resistance gene will lead to
inhibition of cell viability or growth. In order to monitor the
desired compound activity as well as the undesired influence on
cell viability from the same sample, the assay was multiplexed
via a noninvasive measure of cell viability by resazurin, followed
by quantification of the luciferase expression as described by
Didiot et al.17

The activity of these two readouts was then normalized by
use of DMSO as the neutral control (0% residual activity) and
benzalkonium chloride as the active control (i.e., −100%
residual activity) for both the resazurin and luminescence assay
readouts. This slightly artificial control had to be used because
at present there are no known control compounds influencing
just the EMCV IRES-directed translation. This multiparametric
assay was developed so as to allow identification of compounds
inhibiting cell growth, as such compounds would also appear as
hits for compounds inhibiting IRES-mediated translation. In
addition, compounds that stimulate cell proliferation would also
appear as compounds increasing IRES mediated translation
without this internal control.

■ RESULTS
Retrospective Study on PubChem q-HTS Data Sets.

From the complete screening data sets downloaded from Pub-
Chem, different reduced data sets were prepared by pro-
gressively removing compounds with a given potency thresh-
old. All compounds below the threshold were removed, even if
they are annotated as inconclusive or inactive by PubChem. For
both assays, four thresholds were used: 10, 20, 30, and 40 μM
(40 μM is the lowest potency associated with a compound).
However, the definition of a hit is more restricted. Only a
compound with a potency less than, or equal to, 10 μM and
annotated as active by PubChem was considered as a hit.
Compound set enrichment was applied to complete and re-
duced data sets. For an illustration of reduced data sets and hit
definitions, see Figure S6 in Supporting Information.
Three conditions were applied to the definition of validated

latent hit series. The scaffold defining the series must be
evaluated as active in both the complete (first condition) and
the reduced (second condition) data sets according to com-
pound set enrichment. These two conditions assess activity of
the series but do not validate its potential to promote any
weakly active compounds into hits. Thus a scaffold is only
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considered as a validated latent hit scaffold if a third condition
is met: the scaffold must have at least one hit in the complete
data set (which has been removed in the reduced set). This
definition of validated latent hit series is illustrated in Figure 1.
Four indexes were defined for analysis of complete and

reduced data sets:

• Scaffold recovery rate: fraction of active scaffolds
recovered relative to the number of scaffolds recovered
when the complete data set is used.

• Scaffold confirmation rate: fraction of validated latent
hit scaffolds relative to the number of scaffolds recovered
when the reduced data set is used. This is a lower boun-
dary of the true positive rate, as for these scaffolds their
active nature is evident from the data; there is a possi-
bility that other scaffolds could be true latent hit scaffolds
as well, but the screening data set did not contain enough
information to validate them.

• Hit recovery rate: Fraction of compounds identified as
hits from at least one scaffold predicted as active accord-
ing to CSE p-value, relative to the total number of hits.

• Active scaffold membership rate: fraction of com-
pounds covered by at least one active scaffold, relative to
the total number of compounds in the data set.

PubChem assays 893 and 886 contain respectively 569 and 227
scaffolds predicted as being active according to the CSE p-values,
based on the full data sets. Among these scaffolds, 296 (52%) and
123 (54%), respectively, contain hits and can be used to evaluate
the ability of this method to identify scaffolds containing latent hits.
Figure 2 shows the effect of removal of compounds with an increas-
ing potency cutoff from the complete data set on the prediction
performance. For both PubChem data sets the following measures
were analyzed: scaffold recovery rate, scaffold confirmation rate, hit
recovery rate, and active scaffold membership rate.
The key findings from Figure 2 can be summarized as

follows: When the data set is reduced in such a way that less
and less active compounds remain, the scaffold recovery rate
drops, meaning that fewer active scaffolds are identified. Also
the hit recovery rate drops, but to a lesser extent. The active
scaffold membership rate remains almost unchanged. These
numbers suggest that the remaining “active” scaffolds still con-
tain the majority of the true hits and are scaffolds populated by
many compounds in this data set. The activity of such scaffolds
can be predicted with high confidence, despite only weakly
active compounds being present. What is also remarkable is
that the scaffold confirmation rate is relatively high to begin
with and drops only slowly when the more active compounds

Figure 1. Definitions of validated latent hit series, scaffold recovery rate, and scaffold confirmation rate. A validated latent hit series is defined by
three conditions. The scaffold that defines the series must be active according to compound set enrichment in both the complete and reduced data
sets. This scaffold must also have hits in the complete data set. This third condition corresponds to a latent hit series promotion and thus confirms
that the series is truly latent. The scaffold recovery rate is defined as the number of scaffolds active in both the complete and the reduced data set
divided by the number of scaffolds active in the complete data set. The scaffold confirmation rate is defined as the number of validated latent
hit series divided by the number of active scaffolds in the complete data set. CD, complete data set; CSE, compound set enrichment; RD, reduced
data set.
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are removed from the data set. In practice, this suggests that
such scaffolds, being identified as active by CSE but which lack
any highly active hits, are very likely genuine classes of latent
hits. A detailed structural description of one example is given in
the Supporting Information.
The number of compounds per scaffold predicted as active

was evaluated further, to determine whether lacking support in
the data set is indeed the reason why the scaffold recovery rate
drops when the data set is reduced. Reduction of the data set
influences the CSE prediction results in two ways. Some active
scaffolds are removed or reduced to singletons in the reduced
data sets and their activity p-values cannot be evaluated any
more. In addition, the number of compounds per scaffold is an
important parameter to compute the p-value with the KS test,
and for active scaffolds, decreasing the number of compounds
increases the p-value. Progressively removing the most active
compounds has almost no influence on the highly populated
scaffolds with more than 100 compounds. It has little influence
on scaffolds with between 10 and 32 compounds and is
dramatic for scaffolds with less than 11 compounds. The
detailed distribution of series sizes can be found in Figure S3 in
the Supporting Information.
Prospective Study with the IRES Assay. The assay used

in the prospective study differs from the simpler assays used in
the retrospective study, as there are two readouts to be
considered. While activity in the luminescence readout was
desired, the compounds should have no effect on the cell viabi-
lity readout in order to ensure that the observed luminescence
effect is not a secondary effect due to changes in cell viability. In
the following, this vocabulary will be used: Compounds that
inhibit expression of the IRES-directed Fluc gene are termed
antagonists and result in negative percentage residual activity,
while compounds increasing the amount of Fluc expression are
termed agonists and result in a positive percentage residual
activity.
This paragraph provides an overview of the protocol used for

identification and validation of latent hit series (see Figure 3).
In order to favor understanding of the protocol, it has been
divided into five distinct steps (a−e). In step a, the primary
screen, around 14 000 compounds from a library of purified
natural products were tested at a single concentration of 5 μM.

In the data analysis, step b, the activities of the different sca-
ffolds in both luminescence and cell viability readouts were
evaluated by applying CSE, in order to identify hit series and
latent hit series.5,14 Primary hits were defined according to the
classical cutoff-based method, as compounds with a percentage
of activity greater than or equal to 50% for agonist and less than
−50% activity in the luminescence readout for antagonists.
Then the scaffolds containing at least one hit were defined as
hit series and the remaining active scaffolds as latent hit series.

Figure 3. Prospective analysis: overview of the protocol used for
identification and validation of latent hit series.

Figure 2. Evaluation of CSE efficacy to identify latent hit series. Compound set enrichment is applied to complete and reduced data sets. These
reduced data sets contain only weak and inactive compounds. CD, complete data set; RD_XμM, reduced data sets obtained by removing all
compounds with an activity ≤ X from the data set.
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In step c, latent hit series were selected for further follow-up
according to chemical attractiveness and their effect on cell viability.
How this has been done in detail is described further below. In the
latent hit series expansion, step d, additional compounds containing
the chosen latent hit scaffolds were selected from the Novartis
compound archive and tested in the same assay format as used for
the primary screen. In step e, the activity of the 50 most active
antagonists and agonists was confirmed by monitoring their con-
centration response by AC50 measurements. Only series for which
at least one compound with an (absolute) AC50 less than or equal
to 10 μM were considered as validated latent hit series.
The primary activity data of the initially screened ∼14 000

compounds shows a strong correlation between activity and cell
viability effects (see Figure 4). Activity and cell viability effects
of 13 369 scaffolds were evaluated by applying CSE. Moreover,
the method was applied to detect both positive and negative
effects on both activity (agonists and antagonists) and cell
viability (cell division and cytotoxicity). Hence each scaffold is
annotated by four p-values (see Figure 5). These annotations
enable a scaffold selection prioritizing those series with activity
in the IRES readout but with little or no effect on cell viability
(p-value > 0.01 for both positive and negative effects on cell
viability). The number of scaffolds identified as active with
and without the Bonferroni correction (which was used as a
multiple hypothesis correction18) is given in Table 1. After a
Bonferroni correction was applied to account for multiple tests
being conducted, 33 scaffolds showing antagonist activity and
three scaffolds showing agonist activity (both without signi-
ficant effects on cell proliferation) were identified. Without
Bonferroni correction, these numbers are respectively 393 and 153.
None of the overt hit series were considered for chemical

expansion. As mentioned before, primary hits were defined as
compounds with an absolute percentage of activity greater than

or equal to 50% (619 antagonists and 300 agonists). Almost all
active scaffolds after Bonferroni correction are represented by
compounds identified as hits in the primary screen (only six latent
hit scaffolds are identified for antagonism). However, by consider-
ing active scaffolds without Bonferroni correction, 147 antagonist
and 76 agonist latent hit series were identified. Interestingly, the
proportion of active series that showed little or no effect on cell
viability was most pronounced in latent hit series (86% and 93%
respectively for antagonists and agonists) than in hit series (35%
and 70%). From these latent hit series, 16 and 22 scaffolds respec-
tively were selected for positive (agonists) and negative (antagonists)
modulation of activity. The selection of scaffolds for further follow-
up was done by visual inspection according to scaffold activity
p-values, cell viability p-values, and chemical attractiveness.
To expand chemical space around these scaffolds, additional

compounds were selected from the Novartis screening library.
For some scaffolds the number of compounds available was too
large to include all of them for follow-up testing. For each of
the scaffolds, a subset of new compounds was selected accord-
ing to chemical attractiveness and similarity to the compounds
screened in the initial primary screen (for more information, see
Materials and Methods). In total, 832 compounds were selected
for this chemical expansion. As negative controls, 80 compounds
with similar polar surface area (PSA), molecular weight (MW),
and log P (ALogP) to those of compounds selected for latent hit
promotion were also tested (see Materials and Methods for
details). Compounds selected from both latent hit series and
negative controls were tested in a second primary screen. Com-
pound activity and cell viability results are shown in Figure 4.
Of these compounds, 30 showed activity greater than 50%

and were identified as agonists (compared to only two for
the negative controls). A further five compounds with activity
less than −50% residual activity were identified as antagonists

Figure 4. Compound activities (IRES-directed firefly luciferase expression) and cell viabilities in primary screens 1 (step a) and 2 (step d). Red and
blue, primary hits respectively for antagonists and agonists; green, inactive compounds.
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(compared to only one from the negative controls). Table 2
summarizes the number of primary hits (both with and without
effects on cell viability) in both primary screens. The activity
distribution of compounds selected for agonist and antagonist
activity was compared to the activity distribution of the negative
controls via the one-sided two-sample KS test. For both anta-
gonists and agonists, a significant activity shift was observed
(with p-values respectively of 0.0002 and 0.0069).
The 50 most active agonists (lowest activity at around 40%

residual activity) and the 50 most active antagonists (lowest

activity at around −20% inhibition) were retested to determine
whether they displayed a concentration response. Even if anta-
gonist activity is low, and in order to avoid the missing of
interesting hits, the same number of antagonist compounds as
for agonist was tested in validation. Activity and cell viability of
these compounds were tested for a concentration response at
eight concentrations from 0 to 10 μM in quadruplicate (see
Figures S4 and S5 in Supporting Information). Cell viability
was monitored via the resazurin assay readout; this showed that
these compounds are not overtly toxic under the experimental

Table 1. Number of Active Scaffolds Identified According to CSE with and without Bonferroni Correctiona

active scaffolds with Bonferonni correction, NECV/all (%) active scaffolds without Bonferonni correction, NECV/all (%)

all HS LHS all HS LHS

antagonists 33/201 (16) 27/194 (14) 6/7 (86) 393/883 (45) 246/712 (35) 147/171 (86)
agonists 3/7 (43) 3/7 (43) 0/0 153/192 (80) 77/110 (70) 76/82 (93)

aScaffolds were considered to have no effects on cell viability if the corresponding p-value was greater than 0.01. NECV, no effect on cell viability;
HS, hit series; LHS, latent hit series.

Table 2. Number of Primary Hits Identified in Primary Screens 1 (Step a) and 2 (Step d)a

primary screen 2 (step d)

primary screen 1 (step a) latent hit series (832 cpds) negative controls (80 cpds)

antagonists NECV/T
(%)

agonists NECV/T
(%)

antagonists NECV/T
(%)

agonists NECV/T
(%)

antagonists NECV/T
(%)

agonists NECV/T
(%)

no. of hits 139/619 (22) 93/300 (31) 3/5 (60) 22/30 (73) 1/1 (100) 1/2 (50)
aPrimary hits are defined as compounds with an absolute percentage of activity greater than or equal to 50%. Nontoxic primary hits are defined as
primary hits with an absolute percentage of residual activity in the cell viability assay less than 25%. NECV, number of hits with no effects on cell
viability; T, total number of hits (number of hits with no effects on cell viability + number of hits with effect on cell viability).

Figure 5. Compound series activities (x-axis) and cell viabilities effects (y-axis) evaluated by CSE. Only active series are displayed. These active series
are divided into hit series (defined by an active scaffold with at least one primary hit) and latent hit series (defined by an active scaffold and the
absence of primary hits). They are represented respectively by small red squares and large blue circles. Series with no significant effect (p-value >
0.01) on cell viability are highlighted by orange shading. Latent hit series were triaged according to their activity, effects on cell viability, and chemical
attractiveness (visual inspection). Latent hit series selected for chemical expansion are represented with a bigger point than the others.
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conditions used. As for the retrospective analysis, we defined as
a validated hit each compound with an AC50 (absolute) value
less than or equal to 10 μM. The dose response curves of the
primary hits activity show, for 14 of them, an absolute AC50

from 0.42 to 8.77 μM (none of them has an absolute AC50 for
cell viability). No primary hit compounds (neither agonists nor
antagonists) were identified from the compounds selected as
negative controls. These 14 compounds belong to six chemi-
cally different series (some represented by more than one
scaffold).
Out of the six series for which we observed and validated

a latent hit promotion, scaffold and representative compounds
of three series are represented in Figure 6. Nine latent hit

promotions were observed for the first series and one for the second
and the third series. Series 1 is clearly confirmed as active, as nine
validated hits were identified (see Table S3 in Supporting
Information). Series 4 (structures not disclosed) gave two
validated hits. For each remaining series, only one validated
hit was found. Nevertheless, a weak activity was also vali-
dated for other compounds within these series (except
series 6). This weak but consistent activity indicates that these
hits are not false positives but truly active in the assay. For each
series, we provide AC50 values (concentration at which the
activity is equal to half the AC50 curve activity range), absolute
AC50 values (concentration at which the activity is equal to
−50% for antagonists and 50% for agonists), and Amax values
(activity measured at the highest concentration) of all com-
pounds as well as distance with best compounds in the series in
Supporting Information (Tables S3−S6) and in Figure 6. Series
1, 2 and 5 were agonists and series 6 was antagonist in the first
primary screen (according to CSE and so based on their activity
distribution). In confirmation stage, these series also show
compounds with the same activity direction. However, series 3
and 4, which were both antagonist in the first primary screen,
show compounds with both agonist and antagonist activity at
the confirmation stage after chemical expansion. These scaffolds
can deliver both agonist and antagonist compounds. For the
latent hit series 2, the active scaffold itself was identified as a hit.
This result is of interest for using CSE to identify active
fragments, which could further be confirmed by fragment-based
screening technologies.

■ DISCUSSION
This report demonstrates again the utility of the “similarity
principle” first articulated by Johnson and Maggiora,19 that
similar compounds will have similar activity. In the context of
compound set enrichment, the similarity principle also inte-
grates weak active compounds, that is, that compounds with
structural similarity to an active or a set of active (even weak)
compounds will tend to be active themselves. This work
classifies similar compounds by their chemical scaffold rather
than by some measure of similarity. This approach has the
advantage that the navigation in the scaffold space is intuitive to
medicinal chemists and also tends to highlight how activity is
associated with particular scaffolds, which can then help in
pharmacophore identification.20

One of the important aspects of CSE is that the method does
not use a “hard” cutoff to define compound activity during ana-
lysis of the compound classes; rather, it monitors the activity
distribution of the compound class. This helps to remove the
uncertainty introduced in selecting a suitable activity cutoff to
define active or inactives. In fact, while there have been other
methods for hit identification (or even for rescue of false
negatives) from screening results using structural information,
these methods have all relied on the use of an activity cutoff to
first select “active” compounds.21−23 This is highlighted by the
observation that even if the most liberal definition of active com-
pounds were removed from the test data set, the method was
still able to identify classes of compounds that would have acted
as starting points for latent hit discovery. This shows that the
method could be used to “rescue” starting points from screen-
ing campaigns that may appear to have failed.
The results of the retrospective study presented here also

have implications for the design of compound libraries for
screening. There have been a number of compound library
design strategies that argue for the selection of as diverse a set

Figure 6. Activity and structures of compounds selected for validation
for three out of six of validated latent hit series. Active scaffolds have
been determined by analysis of primary screening data with CSE. A
chemical expansion around active scaffolds defining latent hit series
has been done. Activity of these new compounds was evaluated in a
second primary screen. Best compounds were validated in a dose
response activity measurement at height concentrations in quad-
ruplicate. For each series, the active scaffold identified by CSE is
highlighted in red (series definition) and its p-value is indicated. For
each series, the compound on the left is a hit (defined as a compound
with an absolute AC50 less than or equal than 10 μM) representative of
the series. Other compounds are nearest neighbors (NN) from this hit.
All compounds tested for series 2 and 3 are represented. However, for
the first series, eight other hits and seven latent hits have been
identified. Absolute AC50, AC50, and distance from the hit can be
found in Supporting Information (Tables S3−S6).
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of compounds as possible to cover as wide a range of com-
pound space as possible, or alternatively to screen as many
compounds as possible in a random manner.24 These methods
all result in uneven coverage of chemistry space with the
presence of “singletons” for which no related compounds are
also present in the library. While these can be valuable starting
points, if they display sufficient activity in the primary screen, it
is not possible to use such compounds as starting points for
latent hit series identification. In fact, there have been a small
number of studies that suggest that screening library design
might be better focused to include groups of related com-
pounds.25 This study would support such strategies as a means
to maximize the ability of CSE to identify latent hits. Analysis of
the class size distributions suggests that a screening collection
should contain at least 10 members of a compound scaffold
class but that testing more than 100 compounds from a scaffold
class will not help identify active classes. This observation is in
accordance with previous studies from Schreyer et al.26 and
Nilakantan et al.27

In the prospective study, CSE has been applied to a complex
cell-based assay monitoring a range of physiological processes.
Even in such a complex screening model, CSE was able to iden-
tify classes of compounds that, when expanded, yielded addi-
tional active compounds that gave a validated, concentration-
responsive activity, confirming that this method has the
potential to identify latent hit series hidden within HTS results
even without prior knowledge about SAR hits or target struc-
ture. This is in contrast to a set of compounds that were chosen
to purely reflect the physical−chemical properties of the test set
of compounds. In this control, no active compounds were
identified.
This prospective study also highlighted another application

of CSE in that the method was used to deprioritize compound
classes showing effects on cell viability as well as the desired
activity. This resulted in almost all of the compounds selected
for CSE having a markedly reduced activity profile in the cell
viability readout, while the method was still able to select
compounds acting on IRES-directed gene expression. However,
such use of CSE for multiparameter compound optimization is
not completely automated. The observation in the prospective
study that CSE resulted in compounds showing agonist as well
as antagonist activity also highlights the strength of using the
KS statistic to identify classes of compounds showing activity
different from the bulk of inactive compounds. The observation
that classes of compounds can show both agonist and anta-
gonist activities has been reported for nuclear hormone recep-
tors as well as for ligands binding G protein-coupled receptors
(GPCRs), so while unexpected, it is not without precedent.28,29

■ CONCLUSION

The ability of compound set enrichment to identify valid latent
hit series has been demonstrated both retrospectively and in a
prospective study. Six nontoxic latent hit series were identified
in the prospective study. These series display interesting SAR
that can be exploited to expand the series or to derive relevant
pharmacophores that can be used to discovered new active
scaffolds. It also supports the objective that latent hit series can
be identified without prior knowledge about SAR hits, about
target structure, and even without knowing the target itself.

■ MATERIALS AND METHODS

Compound Set Enrichment. Compound Series Defi-
nition: Scaffold Network. The molecules represented in the
data sets used in this study were processed to remove salts and
to standardize charges and stereochemistry as described
previously.5 The preprocessed data sets were classified by the
scaffold network classification.14 The scaffold network is a
scaffold-based compound classification. To derive this network,
all side chains from compounds are removed to derive their
molecular framework. Then peripheral rings are progressively
removed to generate smaller and smaller rings. This process
generates a parent/child relationship. Each parent scaffold is a
substructure of its largest child scaffolds. Children can have
several parents and vice versa. Then all scaffold activities were
predicted by applying compound set enrichment to simulated
(retrospective analysis) or real (prospective analysis) primary
screening data.5,14

Compound Series Activity Evaluation: Kolmogorov−
Smirnov Hypothesis Test. Compound set enrichment uses a
nonparametric test followed by a multiple hypothesis test
correction to evaluate scaffold activities. The Kolmogorov−
Smirnov (KS) hypothesis test used here does not use any
activity cutoff. Rather, it evaluates how likely it is that the
activity distribution of the set of compounds sharing a given
scaffold can be obtained by random sampling of the overall
activity distribution of the assay. If that is the case, then the null
hypothesis is true and the scaffold is not considered to be
active. For each scaffold, the probability that the null hypothesis
is true (p-value) is computed. If this p-value is smaller that a
critical level of significance (α ≤ 0.01), the null hypothesis is
rejected and the scaffold is considered as “active”. This
definition works only if a single scaffold activity is evaluated.
When multiple scaffolds are tested, a correction that decreases
the level of significance needs to be applied in order to decrease
the number of false positives. We used the Bonferroni
correction. The new level of significance for the analysis is
obtained by dividing the level of significance for an individual
scaffold by the number of scaffolds being considered. This
correction was applied separately for each level in the scaffold
network, as initially proposed by Varin et al.5

Retrospective Study. For the retrospective study, the
activity readout at the highest concentration of the qHTS data
has been used to simulate a conventional, single-concentration
HTS. Details are given in Supporting Information.

Prospective Study. Compound Libraries. The primary
screen was performed on a proprietary collection of purified
natural products; at the time of screening it was about 14 000
compounds. Compounds have mainly been isolated from
actinomycetes, myxobacteria, and plant sources. For the latent
hit series expansion, additional compounds were selected from
the Novartis compound archive. The archive contains more
than one million compounds, mainly synthetics.

Assay Format of EMCV IRS Assay. Compound screening
was performed in a stable cell line expressing a bicistronic
reporter construct. This transcript contains a neomycin gene
(Neo), which is translated in a cap-dependent mechanism, and
the firefly luciferase (Fluc) reporter gene under the control of
the EMCV IRES (see Figure S7 in Supporting Information).
This assay was designed to potentially identify compounds that
modulate Fluc expression and thus the EMCV IRES activity in
a cap-independent manner, with the ability to detect two assay
readouts with each well monitoring cell viability as well as
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compound effects on IRES-directed translation. Cell viability
was monitored via noninvasive reduction of resazurin dye to
evaluate the effect of compounds on viability. The compound
activity on the IRES element was monitored by quantification
of luciferase expression via the Steady-Glo assay. In order to
identify compounds inhibiting or activating IRES-directed
expression of the firefly luciferase, a proprietary library of natu-
ral products was tested in a primary screen at a concentration of
5 μM. As a positive control inhibition of the Fluc expression,
the cells were killed by use of 500 μM benzalkonium chloride.
After 24 h of incubation of cells with or without compounds,
the test plates were incubated with the resazurin reagent, and a
cell viability measurement was taken. The cells were then lysed
and EMCV-IRES activity was determined by measuring the
activity, and thus the expression, of luciferase. Data were then
analyzed by use of a software package developed in-house. The
Z′-factor for each assay plate was calculated for the activity and
cytotoxic end points from the control wells, and this factor was
used to monitor assay quality.30 All plates gave a Z′-factor value
above 0.5, indicating acceptable assay quality.30 More details on
materials and methods are given in Supporting Information.
Compound Data Sets for Prospective Study. In the initial

primary screen, a library of around 14 000 compounds, mostly
natural products, was tested. Other compounds selected for
chemical expansion and negative controls were selected in a
library of nonnatural compounds. Compound purities were not
established for compounds tested in primary screens but were
evaluated for all compounds tested for AC50. Purity was
determined by HPLC−MS at 214 nm. Analytical reverse-phase
(Ascentis Express C18; 30 mm ×2.1 mm, particle size 2.7 μm)
high-performance liquid chromatography coupled to mass
spectrometry (HPLC−MS) was performed with an Agilent
1100 binary gradient module G1312A equipped with Agilent
G1315B DAD, Waters Acquity ELSD, and Waters micromass
ZQ. Mass spectra were acquired in both ESI+ and ESI− modes,
scanning from m/z 100 to 1600 Da. All final compounds were
analyzed employing a linear gradient from 2% to 98% methanol
(+0.04% formic acid) in water (+0.05% formic acid) over 1.5 min
and a flow rate of 1.1 mL/min, and unless otherwise stated, the
purity level was >95%.
Active Scaffold Chemical Expansion. For each of the

selected active scaffolds, available compounds in the Novartis
compound library were identified and sorted by similarity to
the best compounds tested in the primary screen within the
corresponding series. These compounds were then triaged
according to chemical attractiveness (by eye determination).
This process is not automated.
Negative Controls. To select these negative controls we

derived a binned 3D matrix (three axes for PSA, MW, and
ALogP) from the 832 compounds selected for latent hit
series chemical expansion. Bins of 50 Å2, 100, and 1 used,
respectively, for PSA, MW, and ALogP. These values were
computed by use of the following components of the Pipeline
Pilot software:31 “Surface Area and Volume” (PSA), “Molecular
Weight”, and “AlogP”. Then a set of 80 new compounds with a
similar distribution of physicochemical properties as this binned
matrix were selected in the Novartis compound archive.
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